direct product, metabelian, soluble, monomial, A-group
Aliases: C22×A4, C23⋊C6, C24⋊1C3, C22⋊(C2×C6), SmallGroup(48,49)
Series: Derived ►Chief ►Lower central ►Upper central
C22 — C22×A4 |
Generators and relations for C22×A4
G = < a,b,c,d,e | a2=b2=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >
Character table of C22×A4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | linear of order 6 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ9 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | linear of order 6 |
ρ10 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | linear of order 6 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ12 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | linear of order 6 |
ρ13 | 3 | -3 | -3 | 3 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | -3 | 3 | -3 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ15 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ16 | 3 | 3 | -3 | -3 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)
(2 8)(3 9)(5 11)(6 12)
(1 7)(3 9)(4 10)(6 12)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
G:=sub<Sym(12)| (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9), (2,8)(3,9)(5,11)(6,12), (1,7)(3,9)(4,10)(6,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12)>;
G:=Group( (1,4)(2,5)(3,6)(7,10)(8,11)(9,12), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9), (2,8)(3,9)(5,11)(6,12), (1,7)(3,9)(4,10)(6,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12) );
G=PermutationGroup([[(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)], [(1,10),(2,11),(3,12),(4,7),(5,8),(6,9)], [(2,8),(3,9),(5,11),(6,12)], [(1,7),(3,9),(4,10),(6,12)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)]])
G:=TransitiveGroup(12,25);
(1 10)(2 11)(3 12)(4 8)(5 9)(6 7)
(1 4)(2 5)(3 6)(7 12)(8 10)(9 11)
(1 4)(2 9)(3 12)(5 11)(6 7)(8 10)
(1 10)(2 5)(3 7)(4 8)(6 12)(9 11)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
G:=sub<Sym(12)| (1,10)(2,11)(3,12)(4,8)(5,9)(6,7), (1,4)(2,5)(3,6)(7,12)(8,10)(9,11), (1,4)(2,9)(3,12)(5,11)(6,7)(8,10), (1,10)(2,5)(3,7)(4,8)(6,12)(9,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12)>;
G:=Group( (1,10)(2,11)(3,12)(4,8)(5,9)(6,7), (1,4)(2,5)(3,6)(7,12)(8,10)(9,11), (1,4)(2,9)(3,12)(5,11)(6,7)(8,10), (1,10)(2,5)(3,7)(4,8)(6,12)(9,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12) );
G=PermutationGroup([[(1,10),(2,11),(3,12),(4,8),(5,9),(6,7)], [(1,4),(2,5),(3,6),(7,12),(8,10),(9,11)], [(1,4),(2,9),(3,12),(5,11),(6,7),(8,10)], [(1,10),(2,5),(3,7),(4,8),(6,12),(9,11)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)]])
G:=TransitiveGroup(12,26);
(1 3)(2 4)(5 8)(6 9)(7 10)(11 14)(12 15)(13 16)
(1 2)(3 4)(5 16)(6 14)(7 15)(8 13)(9 11)(10 12)
(1 13)(2 8)(3 16)(4 5)(6 7)(9 10)(11 12)(14 15)
(1 11)(2 9)(3 14)(4 6)(5 7)(8 10)(12 13)(15 16)
(5 6 7)(8 9 10)(11 12 13)(14 15 16)
G:=sub<Sym(16)| (1,3)(2,4)(5,8)(6,9)(7,10)(11,14)(12,15)(13,16), (1,2)(3,4)(5,16)(6,14)(7,15)(8,13)(9,11)(10,12), (1,13)(2,8)(3,16)(4,5)(6,7)(9,10)(11,12)(14,15), (1,11)(2,9)(3,14)(4,6)(5,7)(8,10)(12,13)(15,16), (5,6,7)(8,9,10)(11,12,13)(14,15,16)>;
G:=Group( (1,3)(2,4)(5,8)(6,9)(7,10)(11,14)(12,15)(13,16), (1,2)(3,4)(5,16)(6,14)(7,15)(8,13)(9,11)(10,12), (1,13)(2,8)(3,16)(4,5)(6,7)(9,10)(11,12)(14,15), (1,11)(2,9)(3,14)(4,6)(5,7)(8,10)(12,13)(15,16), (5,6,7)(8,9,10)(11,12,13)(14,15,16) );
G=PermutationGroup([[(1,3),(2,4),(5,8),(6,9),(7,10),(11,14),(12,15),(13,16)], [(1,2),(3,4),(5,16),(6,14),(7,15),(8,13),(9,11),(10,12)], [(1,13),(2,8),(3,16),(4,5),(6,7),(9,10),(11,12),(14,15)], [(1,11),(2,9),(3,14),(4,6),(5,7),(8,10),(12,13),(15,16)], [(5,6,7),(8,9,10),(11,12,13),(14,15,16)]])
G:=TransitiveGroup(16,58);
(1 15)(2 13)(3 14)(4 20)(5 21)(6 19)(7 24)(8 22)(9 23)(10 18)(11 16)(12 17)
(1 4)(2 5)(3 6)(7 17)(8 18)(9 16)(10 22)(11 23)(12 24)(13 21)(14 19)(15 20)
(1 15)(2 16)(3 12)(4 20)(5 9)(6 24)(7 19)(8 22)(10 18)(11 13)(14 17)(21 23)
(1 10)(2 13)(3 17)(4 22)(5 21)(6 7)(8 20)(9 23)(11 16)(12 14)(15 18)(19 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (1,15)(2,13)(3,14)(4,20)(5,21)(6,19)(7,24)(8,22)(9,23)(10,18)(11,16)(12,17), (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20), (1,15)(2,16)(3,12)(4,20)(5,9)(6,24)(7,19)(8,22)(10,18)(11,13)(14,17)(21,23), (1,10)(2,13)(3,17)(4,22)(5,21)(6,7)(8,20)(9,23)(11,16)(12,14)(15,18)(19,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (1,15)(2,13)(3,14)(4,20)(5,21)(6,19)(7,24)(8,22)(9,23)(10,18)(11,16)(12,17), (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20), (1,15)(2,16)(3,12)(4,20)(5,9)(6,24)(7,19)(8,22)(10,18)(11,13)(14,17)(21,23), (1,10)(2,13)(3,17)(4,22)(5,21)(6,7)(8,20)(9,23)(11,16)(12,14)(15,18)(19,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(1,15),(2,13),(3,14),(4,20),(5,21),(6,19),(7,24),(8,22),(9,23),(10,18),(11,16),(12,17)], [(1,4),(2,5),(3,6),(7,17),(8,18),(9,16),(10,22),(11,23),(12,24),(13,21),(14,19),(15,20)], [(1,15),(2,16),(3,12),(4,20),(5,9),(6,24),(7,19),(8,22),(10,18),(11,13),(14,17),(21,23)], [(1,10),(2,13),(3,17),(4,22),(5,21),(6,7),(8,20),(9,23),(11,16),(12,14),(15,18),(19,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,49);
(1 22)(2 23)(3 24)(4 7)(5 8)(6 9)(10 16)(11 17)(12 18)(13 19)(14 20)(15 21)
(1 10)(2 11)(3 12)(4 19)(5 20)(6 21)(7 13)(8 14)(9 15)(16 22)(17 23)(18 24)
(2 8)(3 9)(5 23)(6 24)(11 14)(12 15)(17 20)(18 21)
(1 7)(3 9)(4 22)(6 24)(10 13)(12 15)(16 19)(18 21)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (1,22)(2,23)(3,24)(4,7)(5,8)(6,9)(10,16)(11,17)(12,18)(13,19)(14,20)(15,21), (1,10)(2,11)(3,12)(4,19)(5,20)(6,21)(7,13)(8,14)(9,15)(16,22)(17,23)(18,24), (2,8)(3,9)(5,23)(6,24)(11,14)(12,15)(17,20)(18,21), (1,7)(3,9)(4,22)(6,24)(10,13)(12,15)(16,19)(18,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (1,22)(2,23)(3,24)(4,7)(5,8)(6,9)(10,16)(11,17)(12,18)(13,19)(14,20)(15,21), (1,10)(2,11)(3,12)(4,19)(5,20)(6,21)(7,13)(8,14)(9,15)(16,22)(17,23)(18,24), (2,8)(3,9)(5,23)(6,24)(11,14)(12,15)(17,20)(18,21), (1,7)(3,9)(4,22)(6,24)(10,13)(12,15)(16,19)(18,21), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(1,22),(2,23),(3,24),(4,7),(5,8),(6,9),(10,16),(11,17),(12,18),(13,19),(14,20),(15,21)], [(1,10),(2,11),(3,12),(4,19),(5,20),(6,21),(7,13),(8,14),(9,15),(16,22),(17,23),(18,24)], [(2,8),(3,9),(5,23),(6,24),(11,14),(12,15),(17,20),(18,21)], [(1,7),(3,9),(4,22),(6,24),(10,13),(12,15),(16,19),(18,21)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,50);
C22×A4 is a maximal subgroup of
A4⋊D4 C24.A4 C24.2A4 C24.3A4 C2≀A4 C24.6A4 C24⋊A4 C24.7A4 C24⋊5A4
C22×A4 is a maximal quotient of
Q8.A4 D4.A4 C24.6A4 C24⋊A4
action | f(x) | Disc(f) |
---|---|---|
12T25 | x12-12x10+48x8-77x6+48x4-12x2+1 | 212·318·1992 |
12T26 | x12+2x10-5x8-4x6-5x4+2x2+1 | 248·78 |
Matrix representation of C22×A4 ►in GL4(𝔽7) generated by
6 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
1 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 6 |
4 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
G:=sub<GL(4,GF(7))| [6,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[1,0,0,0,0,6,0,0,0,0,6,0,0,0,0,1],[1,0,0,0,0,6,0,0,0,0,1,0,0,0,0,6],[4,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;
C22×A4 in GAP, Magma, Sage, TeX
C_2^2\times A_4
% in TeX
G:=Group("C2^2xA4");
// GroupNames label
G:=SmallGroup(48,49);
// by ID
G=gap.SmallGroup(48,49);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,2,133,239]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations
Export
Subgroup lattice of C22×A4 in TeX
Character table of C22×A4 in TeX